Nephrocystin-3 is required for ciliary function in zebrafish embryos

W Zhou, J Dai, M Attanasio… - American Journal of …, 2010 - journals.physiology.org
W Zhou, J Dai, M Attanasio, F Hildebrandt
American Journal of Physiology-Renal Physiology, 2010journals.physiology.org
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in
the first three decades of life. It is characterized primarily by renal cysts with extrarenal
involvements of the eye and brain. Ten recessive genes responsible for NPHP have been
identified by positional cloning. This discovery supported a unifying theory of renal cystic
disease, which states that all proteins mutated in cystic kidney diseases of human, mice, or
zebrafish are expressed in primary cilia of renal epithelial cells. Mutations in nephrocystin-3 …
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in the first three decades of life. It is characterized primarily by renal cysts with extrarenal involvements of the eye and brain. Ten recessive genes responsible for NPHP have been identified by positional cloning. This discovery supported a unifying theory of renal cystic disease, which states that all proteins mutated in cystic kidney diseases of human, mice, or zebrafish are expressed in primary cilia of renal epithelial cells. Mutations in nephrocystin-3 (NPHP3) are the cause of human nephronophthisis type 3 and polycystic kidney disease (pcy) mouse mutants. To study the functional role of NPHP3 in normal embryonic development and in the pathogenesis of cystic kidney disease, we characterized the zebrafish ortholog nphp3 by morpholino oligo (MO)-mediated knockdown. When nphp3 function was suppressed by either of the two MOs blocking the translation of the protein or the splicing of mRNA, zebrafish embryos displayed hydrocephalus and pronephric cysts. Knockdown of nphp3 also led to situs inversus phenotypes due to defective cilia at Kupffer's vesicle. We showed that nphp3 genetically interacts with nphp2/inversin and human NPHP3 localizes to primary cilia in Madin-Darby canine kidney cells. Like nphp2/inversin, nphp3 knockdown affected morphogenic cell movement during gastrulation, suggesting nphp3 is essential to regulate convergent extension. Thus nphp3, cooperating with nphp2/inversin, plays an essential role related to ciliary function, and the knockdown provides an animal model that may be used for studies of the pathogenesis and therapy for this disease.
American Physiological Society