

STZ causes hyperglycemia. Blood glucose levels after STZ treatment in WT, MM-VV, AC3-I, *Ncf1*^{-/-} and Mito-treated WT mice as well as after Insulin replacement (overall P < 0.0001, ***P < 0.001, n = 14-38/group). Veh, vehicle; WT, wild type; Mito, MitoTEMPO

Similar survival after sham surgery in diabetic or non-diabetic mice. (A) Survival in WT STZ- and Veh-treated mice after sham surgery, P = 1.0 (the red and blue lines are superimposed), n = 5/group. (B) Similar survival after MI in non-diabetic WT and MM-VV mice, P = 0.7, n = 9-10/group. WT, wild type; Veh, vehicle.

Similar activity levels in diabetic and non-diabetic mice after MI. Spontaneous activity levels (1-5) between WT, MM-VV, AC3-I, $Ncf1^{-/-}$ or WT + Mito mice after STZ + MI. P = 0.2 for activity 0 (1), P = 0.11 for activity 1-10 (2), P = 0.4 for activity 11-15 (3), P = 0.07 for activity 16-20 (4), P = 0.4 for activity >20 (5), n = 4-10 /group. Veh, vehicle; WT, wild type; Mito, MitoTEMPO

Increased ROS and ox-CaMKII in SAN in STZ-treated mice after MI. (A) Representative immunofluorescence images of DHE staining in SAN tissues from WT Veh and WT STZ mice with or without MI. Scale bars: 50 μ m. Overall *P* < 0.0001 by one way ANOVA, ****P* < 0.001, ***P* < 0.01 by Neuman-Keumal's test as post hoc study, *n* = 4-6/group. (B) CaMKII (*P* = 0.14) and ox-CaMKII (****P* = 0.0004) immunostaining in SAN tissues from WT Veh and WT STZ with MI (*n* = 6/group). Veh, vehicle; WT, wild type;

Schematic diagram for gene targeting approach for developing MM-VV mice. (A) A partial map of the CaMKII δ gene (A1), the targeting construct (A2), the resulting targeted allele (A3), and the targeted allele after Cre recombination (A4) are shown. In the targeting construct, a 6kb fragment containing exons 9-12 (mutations in Exon 11) and a 4.5-kb fragment containing exon 13 were used as long and short homologous arms, respectively, flanking a LoxP Neo selection marker. (B) The knock-in mouse (F3) genotype. The gel showed the HinclI–digested PCR products of homozygote (Hom, -/-), heterozygote (Het, +/-) and wild-type (WT, +/+) mice.

Supplemental Figure 6 ROS in SAN from MM-VV, AC3-I and WT diabetic mice. DHE staining in SAN tissues from Veh- and STZ-treated WT mice, STZ-treated MM-VV and AC3-I mice. Overall P = 0.0045, *P < 0.05, n = 4-6/group. NS, not significant. Veh, vehicle; WT, wild type,

Comparable left ventricular contractile function and chamber volumes in non-diabetic (2.1 ± 0.3 days after MI) and diabetic mice (2.0 ± 0.4 days after MI). (A) Ejection fraction (EF), (B) end diastolic volumes (EDV) and end systolic volumes (ESV) after MI in Veh- and STZ-treated WT mice, STZ-treated MM-VV, AC3-I, *Ncf1*^{-/-} or WT + Mito mice. Overall P = 0.6 for EF, overall P = 0.6 for EDV and 0.4 for ESV, n = 4-11/group. Veh, vehicle; WT, wild type; Mito, MitoTEMPO

Increased SAN apoptosis after MI in STZ-treated WT mice, but not MM-VV or AC3-I mice. Representative immunofluorescence images of TUNEL staining in SAN from WT mice treated with Veh + MI or STZ + MI, MM-VV and AC3-I with STZ + MI (Blue, DAPI; Green, HCN4; Red, TUNEL). Scale bars: 50 μ m. Overall *P* < 0.0001, ****P* < 0.001, *n* = 4-8/group. Veh, Vehicle; WT, wild type

Veh

STZ does not affect spontaneous or isoproterenol-stimulated automaticity in isolated SAN cells. (A, B) Representative tracings of spontaneous action potentials from SAN cells isolated from Vehand STZ-treated mice with or without isoproterenol. (C) Summary data of action potential (AP) rates of SAN cells. P > 0.05 between Vehand STZ-treated group at baseline and after isoproterenol at all doses, n = 7-10 cells/group. Veh, vehicle

Supplemental Figure 10 Decreased ROS in SAN from MitoTEMPOL-treated mice. DHE staining in SAN from WT mice treated with Mito + STZ, STZ alone and $Ncf1^{-/-}$ mice treated with STZ. Overall P = 0.0003, *P < 0.05, n = 3-5/group. WT, wild type; Mito, MitoTEMPO

Hyperglycemia triggers mitochondrial ROS generation and apoptosis in WT mice but not apoptosis in MM-VV mice. (A) DHE staining for ROS in cultured WT neonatal cardiomyocyte treated with glucose (Glu), Glu+Mito (MitoTEMPO, 1 mM) or mannitol (Man) and in MM-VV mice treated with glucose (Glu) or mannitol (Man). (B) TUNEL staining in the same experimental groups as in (A). For both panels, overall P < 0.0001, ***P < 0.001 between WT + Glu (33mM) group and all other groups, **P < 0.01 and *P < 0.05 by Neuman-Keuls test as post hoc study. NS, not significant, n = 3-5 assays/group. WT, wild type

	Vehicle	STZ
Body weight (g)	25 ± 0.5	21 ± 0.8*
Heart weight/tibia length (mg/mm)	8.5 ± 0.6	9.2 ± 0.5
Lung weight/tibia length (mg/mm)	8.1 ± 0.4	8.8 ± 0.6
BUN (mg/dl)	24 ± 4	26 ± 1
CO ₂ (mEq/l)	15 ± 3.5	14 ± 1.5

Supplemental Table 1. Body weights, organ weights and blood chemistry of vehicle and STZ-treated mice after MI. Body weights (*P < 0.001, n = 24-25/group), lung weights normalized to tibia length (P = 0.4, n = 6-7/group), and heart weights normalized to tibia length (P = 0.4, n = 6-7/group) compared between vehicle- and STZ-treated mice. Serum BUN (P = 0.5, n = 6-8/group) and bicarbonate levels (P = 0.6, n = 5-9/group) compared between vehicle- and STZ-treated mice.

Echocardiography Parameters	Veh + MI	STZ + MI	Р
Ejection Fraction (%)	38.8 ± 0.07	34.0 ± 0.09	0.67
End Diastolic Volumes (ml)	60.8 ± 3.6	63.1 ± 9.5	0.82
End Systolic Volumes (ml)	36.1± 5.1	45.5 ± 10.5	0.41
Stroke volume (ml)	24.7± 3.2	18.0 ± 2.2	0.11
Heart Rate (BPM)	570 ± 33.7	398 ± 51	0.01*
Cardiac output (ml/min)	14.3 ± 2.1	7.1 ± 1.5	0.019 *
Left ventricular mass (mg)	86.4 ± 6.6	80.2 ± 7.0	0.53

Supplemental Table 2. STZ-treated mice had decreased heart rate and cardiac output, but similar contractile function, left ventricular volumes and mass compared to vehicle-treated mice after MI. P values for comparisons between Veh- and STZ-treated mice after MI, n = 7-9/group. Veh, vehicle.

Patient Characteristics	MI + DM (n=5)	MI (n=5)	Р
Age (year)	64 ± 7	71 ± 2	0.03
Males (%)	75	60	
Ejection fraction (%)	41 ± 6	35 ± 6	0.5
Type II DM (%)	100	n/a	
Insulin (%)	75	n/a	
Glucose (mg/dl)	260 ± 56	121 ± 13	0.04
Hemoglobin A1C (%)	8.0 ± 0.5	n/a	
Pacemaker (%)	25	0	
ACE inhibitor (%)	80	100	
β-Blocker (%)	100	100	

Supplemental Table 3: Patient characteristics for right atrial tissues shown in Figure 3. ACE,

Angiotensin Converting Enzyme.

Cell Type	Source	R gap, longitudinal	R gap,transverse
Atrial	Courtemanche et al. 1998 [*]	$1.5 \ \Omega \text{cm}^2$	15.0 Ωcm ²
Peripheral SAN	Kurata et al. 2008 [#]	Equation 2	$R_{gap,long}$
Central SAN	Kurata et al. 2002 [§]	Equation 2	$R_{gap,long}$
Block zone	Butters et al. 2010 [‡]	4000 Ωcm^2	$R_{gap,long}$
Inexcitable cell	Morita et al. 2009 [†]	4000 Ωcm ²	$R_{gap,long}$

Supplemental Table 4. Mathematical models for different regions of intact SAN

*Courtemanche et al. Am J Physiol. 1998;275:H301-321.

[#]Kurata et al. *Biophys J*. 2008;95:951-977 with sodium channel conductance = 1.8523x10⁻⁶ nS/pF. [§]Kurata et al. *Am J Physiol Heart Circ Physiol*. 2002;283:H2074-2101.

[‡]Butters et al. *Circ Res*. 2010;107:126-37. Block zone modeled as coupled region of inexcitable cells with passive leak conductance ($E_{leak} = -70$ mV).

[†]Morita et al. *Am J Physiol Heart Circ Physiol*. 2009;297:H1594.

State variable	Definition	Initial value
m	Na ⁺ current activation gate	0.004147463955
h	Na ⁺ current inactivation gate	0.9421032891
j	Na ⁺ current slow inactivation gate	0.9319148046
d	L-type Ca ²⁺ current activation gate	0.0001793553646
f	L-type Ca ²⁺ voltage-dependent inactivation gate	0.8466729054
f _{ca}	L-type Ca ²⁺ calcium-dependent inactivation gate	0.5727907784
Xr	Rapidly activating K ⁺ current activation gate	0.02303434883
Xs	Slowly activating K^{+} current activation gate	0.03616188931
оа	Transient outward K^{+} current activation gate	0.03436021906
oi	Transient outward K^{+} current inactivation gate	0.9987671846
ua	Ultrarapid rectifier K ⁺ current activation gate	0.006237057018
ui	Ultrarapid rectifier K^+ current inactivation gate	0.9891443725
u	Ryanodine receptor Ca ²⁺ release activation gate	4.537711703e-16
V	RyR Ca ²⁺ release inactivation gate	1.0
W	RyR Ca ²⁺ release inactivation gate	0.9990895327
[Ca ²⁺] _i	Ca ²⁺ concentration in myoplasm (mM)	0.0002599348619
[Ca ²⁺] _{JSR}	Ca ²⁺ concentration in junctional SR (mM)	0.4298392427
[Ca ²⁺] _{NSR}	Ca ²⁺ concentration in network SR (mM)	1.960512954
[Na⁺] _i	Na ⁺ concentration in myoplasm (mM)	15.19468146
[K ⁺] _i	K⁺ concentration in myoplasm (mM)	134.9547735
V _m	Transmembrane potential (mV)	-79.01495665

Supplemental Table 5. Initial conditions for state variables in mathematical model of atrial action potential*.*Single cell was paced to steady-state at cycle length = 300 ms. Model equations for human atrial cell model are found in original publication (1). SR, sarcoplasmic reticulum.

State	Definition	Initial value	Initial value
variable		(Central)	(Peripheral)
т	Na ⁺ current activation gate	-	0.0690372072
h	Na ⁺ current inactivation gate	-	0.2223618089
j	Na ⁺ current slow inactivation gate	-	0.01430146964
d	L-type Ca ²⁺ current activation gate	0.0006779558663	4.66775128e-05
f	L-type Ca ²⁺ voltage-dependent inactivation gate	0.6621880012	0.459162836
f _{ca}	L-type Ca ²⁺ calcium-dependent inactivation gate	0.5710787057	0.4667391842
X _{r,f}	Rapidly activating K ⁺ current fast activation gate	0.3160790736	0.5254608664
X _{r,s}	Rapidly activating K ⁺ current slow activation gate	0.6156126509	0.6219289422
X _{r,i}	Rapidly activating K ⁺ current inactivation gate	0.847082724	0.933848794
n	Slowly activating K^{+} current activation gate	0.0552203568	0.07350047887
q	Transient outward K^+ current activation gate	0.5239671546	0.5779873691
r	Transient outward K ⁺ current inactivation gate	0.005795549972	0.00199964719
dt	T-type Ca ²⁺ current activation gate	0.005151304518	0.0003472296223
ft	T-type Ca ²⁺ current inactivation gate	0.2498661863	0.3016670853
qa	Sustained inward current activation gate	0.4591365202	-
qi	Sustained inward current inactivation gate	0.3860293202	-
у	Pacemaker (funny) current activation gate	0.02836884815	0.01632643918

[Ca ²⁺] _i	Ca ²⁺ concentration in myoplasm (mM)	0.00023567935	0.0002461860556
[Ca ²⁺] _{JSR}	Ca ²⁺ concentration in junctional SR (mM)	0.3477078758	0.219459533
[Ca ²⁺] _{NSR}	Ca ²⁺ concentration in network SR (mM)	2.518529555	4.245147564
[Na ⁺] _i	Na^+ concentration in myoplasm (mM)	9.211637929	7.679366896
[K⁺] _i	K^{+} concentration in myoplasm (mM)	140.1632028	141.5993186
V _m	Transmembrane potential (mV)	-57.88001647	-74.11420057

Supplemental Table 6. Initial conditions for state variables in mathematical models of central and peripheral SAN cells*. *Single cell underwent spontaneous activity for 10 seconds. Model equations for rabbit central and peripheral node cells are found in original publication (2). SR, sarcoplasmic reticulum

Supplemental equations for mathematical modeling as below:

Capacitive membrane area (cm^2)

x is distance in *cm*.

$$A_{cap} = 110 \times 10^{-6} - 45 \times 10^{-6} \left(\frac{1}{1 + exp(-4(x-7.0))} + \frac{1}{1 + exp(4(x-9.0))} \right)$$
[1]

Gap junction resistance (Ωcm^2)

$$R_g = 110 \left(\frac{1}{1 + exp(-4(x - 7.0))} + \frac{1}{1 + exp(4(x - 9.0))} \right) - 108.5$$
[2]

Conductance of fast sodium current (mS/cm²)

$$\bar{g}_{Na} = 3.7 \times 10^{-6} - 1.85 \times 10^{-6} \left(\frac{1}{1 + exp(-5(x - 6.5))} + \frac{1}{1 + exp(5(x - 9.5))} \right)$$
[3]

References:

- Courtemanche, M., Ramirez, R.J., and Nattel, S. 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology 275:H301-321.
- Kurata, Y., Matsuda, H., Hisatome, I., and Shibamoto, T. 2008. Regional difference in dynamical property of sinoatrial node pacemaking: role of na+ channel current. Biophys J 95:951-977.

Full unedited gel for Figure 3A

Full unedited gel for Figure 3B

Western blot for Figure 3 A, B. ox-CaMKII (A, C) and CaMKII (B, D) staining of human and mice right atrial samples. Red arrow denotes ox-CaMKII or CaMKII.

Full unedited gel for Figure 4A

Western blot for Figure 4A. ox-CaMKII (A) and CaMKII (B) staining of right atrial samples from WT and MM-VV mice. Red arrow denotes ox-CaMKII or CaMKII.